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INTRODUCTION 
 

In 2015, 8.3% of the global population was older than 

65 years of age, but as the world population ages, this 

number is estimated to grow to 15.8% by 2050 [1]. Life  

 

expectancy is projected to continue to increase across 

the globe [2] and these trends have brought new public 

health challenges, such as the need to accurately 

measure the aging process and its associated health 

risks. Reliable biomarkers of aging may result in tools 
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ABSTRACT 
 

Population aging is a looming global health challenge. New biological aging metrics based on DNA methylation 
levels have been developed in addition to traditional aging biomarkers. The prospective relationships of aging 
biomarkers with mitochondrial changes are still not well understood. Here, we examined the prospective 
associations of mitochondrial copy number (mtDNAcn) with several aging biomarkers – DNAm-Age, DNAm-
PhenoAge, DNAm-GrimAge, and leukocyte telomere length. We analyzed 812 individuals from Veteran Affairs 
Normative Aging Study (NAS) with available blood samples from 1999-2013. Whole blood mtDNAcn and 
relative leukocyte telomere length were measured via qPCR. DNA methylation was assessed and used to 
calculate DNAm-Age, DNAm-GrimAge, and DNAm-PhenoAge. Linear mixed models were used to quantify the 
associations of mtDNAcn with DNAm-Age, DNAm-GrimAge, DNAm-PhenoAge, and leukocyte telomere length. 
In multivariable cross-sectional analyses, mtDNAcn is negatively associated with DNAm-Age PhenoAge and 
DNAm-PhenoAge. In contrast, mtDNAcn is associated with prospective measures of higher DNAm-PhenoAge 
and shorter leukocyte telomere length. Our study shows that higher mtDNAcn is associated with prospective 
measures of greater DNAm-PhenoAge and shorter leukocyte telomere length independent of chronological age. 
This indicates a role for mitochondrial in aging-related disease and mortality, but not the departure of 
biological age from chronological age. 
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that can identify inter-individual differences in 

functional decline, disease onset, and mortality risk. 

 

Telomere length is a well-known aging biomarker. 

Telomeres shorten with age in a broad range of 

organisms [3] and shorter telomere length has been 

associated higher rates of mortality from different age-

related pathologies, including heart and vascular 

diseases, diabetes mellitus, Parkinson’s disease, and 

Alzheimer’s disease [4, 5]. More recently, the DNA 

methylation (DNAm) based estimator of biological age, 

DNAm-Age, has become another well-known 

molecular measure of human aging [6]. DNAm-Age 

has since been associated with cancers [6], 

cardiovascular diseases [7, 8], neurological diseases [9, 

10], and chronic inflammation diseases [11]. A meta-

analysis  

of 13 population-based cohorts including a total  

13,089 individuals found that blood DNAm-Age was  

predictive of mortality, even when accounting for 

chronological age, concurrent diseases, and lifestyle 

risk factors [12], suggesting that DNAm-Age captures 

at least in part some additional aspect of biological 

aging. Subsequently, another DNAm based marker, 

DNAm-PhenoAge, was developed to be an improved 

predictor of mortality and health span [13] using 

phenotypic age estimated from a range of aging-related 

clinical measures. Most recently, another metric, 

DNAm-GrimAge [14], has been developed to predict 

all cause mortality and health span.  

 

Unfortunately, the underlying biological and molecular 

processes that drive these epigenetic age biomarkers 

are still unknown. Indeed, there is still a lack of 

understanding about what they represent on 

a molecular level. A recent review [15] pointed out six 

major areas where relationships between DNAm-Age 

and molecular processes have been reported: cellular 

aging processes, nucleic acid processes, immune 

system processes, metabolic processes, cancer 

processes and animal models. Despite the observation 

that the DNAm-Age is associated with metabolic 

processes, the relationship between mitochondrial 

health and DNAm-Age remains understudied. 

Mitochondria are vital for metabolic processes as they 

are responsible for ATP production and are known to 

be involved in the aging process, become larger and 

less numerous with age, accumulating mutations, 

vacuoles, cristae abnormalities, and intramitochondrial 

paracrystalline inclusions [16, 17]. In addition, 

mitochondrial function may be related to DNAm  

aging. Activity of DNA methyltransferases (DNMT), 

as with any cellular enzyme, depend on ATP levels  

and impaired energy production as a result of 

mitochondrial dysfunction may influence normal 

function of DNMTs. 

Mitochondrial DNA copy number (mtDNAcn), a 

measure of mitochondrial genome abundance, is 

commonly used as a reflection of the mitochondria’s 

response to oxidative stress as well as general 

dysfunction [18]. Mitochondria DNA (mtDNA) is 

sensitive to oxidative stress because it lacks a robust 

DNA repair system to restore oxidative stress induced 

damage and mtDNA damage persists longer compared 

to genomic DNA [19]. Typically, mtDNA will 

increase when the endogenous antioxidant response is 

no longer able to recover its redox balance [18], 

possibly as a compensatory response for insufficient 

ROS cleavage [20]. Previous studies have shown that 

mtDNAcn decreases with age [21–23] and is 

positively associated with telomere length [24–27]. 

Furthermore, mtDNAcn has been associated with 

several aging-related diseases such as various primary 

cancers [28], neurodegeneration [29], cardiovascular 

disease [30], and diabetes [18, 29].  

 

Recently, our group has shown that cross-sectionally, 

mtDNAcn is negatively correlated with DNAm-Age 

and hypothesized mtDNAcn may be a proxy of 

mitochondrial buffer capacity [31]. Reduced mtDNAcn 

may be a consequence of exhausted mitochondrial 

buffering capacity, leading to adverse outcomes such as 

aging [31]. However, it is unknown whether mtDNAcn 

or this mitochondrial buffering capacity can predict 

accelerated biological aging. Thus, we extend upon our 

previous study and utilized data from the VA Normative 

Aging Study (NAS) cohort to examine the prospective 

associations of mtDNAcn with four aging biomarkers – 

DNAm-Age, DNAm-PhenoAge, DNAm-GrimAge and 

leukocyte telomere length.  

 

RESULTS 
 

Table 1 describes the baseline characteristics of the 

participants in our study. For the 812 participants with 

available blood samples from 1999-2013, the mean 

chronological age at their first visit was 72.4 (±6.9) years. 

The majority of the subjects were former smokers 

(65.1%, n=529); consume fewer than two drinks/day of 

alcohol consumption (80.9%, n=657), were overweight 

(mean BMI 28.2, standard deviation (SD)=4.1), and have 

diagnosed hypertension (71.2%, n=578), but were free of 

coronary heart disease (70.7%, n=574) or diabetes 

(86.3%, N=701). Regarding mtDNAcn, expressed as a 

relatively ratio of total mtDNA copy numbers and 

nuclear DNA copy numbers, the mean was 1.0 (SD=0.3). 

For statistical modeling, we further divided mtDNAcn 

into quartiles. The mean baseline DNAm-Age, DNAm-

PhenoAge, and DNAm-GrimAge were 73.0 (±7.9), 67.6 

(±8.8), and 67.7 (±6.6) respectively. The mean leukocyte 

telomere length at baseline was 1.3 (±0.5). DNAm-Age 

was weakly correlated with DNAm-PhenoAge (r=0.33) 
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Table 1. Baseline characteristics of normative aging study (NAS) participants in the current analysis (N=812). 

 N (%) 

Race   

White 791 (97.4%) 

Non-White 20 (2.5%) 

Smoking Status   

Current  36 (4.4%) 

Former 529 (65.1%) 

Never 247 (30.4%) 

Alcohol Consumption    

<2 drinks/day 657 (80.9%) 

≥ 2 drinks/day 155 (19.1%) 

Hypertension   

Yes 578 (71.2%) 

No 234 (28.8%) 

Coronary Heart Disease   

Yes 238 (29.3%) 

No 574 (70.7%) 

Diabetes   

Yes 111 (13.7%) 

No 701 (86.3%) 

  Mean (SD) 

Age (years) 72.4 (6.9) 

BMI (kg/m2) 28.2 (4.1) 

DNAm-Age (years) 73.0 (7.9) 

DNAm-PhenoAge (years) 67.6 (8.8) 

Relative Leukocyte Telomere Length 1.3 (0.5) 

Relative Mitochondrial DNA Copy Number  1.0 (0.3) 

 

Table 2. Cross-sectional associations of age with mitochondrial DNA copy number (mtDNAcn) and aging biomarkers. 

  

  

mtDNAcn DNAm-Age DNAm-PhenoAge DNAm-GrimAge Telomere Length 

β  

(95% CI) 
p-value 

β  

(95% CI) 
p-value 

β  

(95% CI) 
p-value β (95% CI) p-value β (95% CI) p-value 

Age 
-0.002  

(-0.005, 0) 
0.05 

0.70  

(0.64, 0.75) 
<0.001 

0.78  

(0.72, 0.85) 
<0.001 

0.81  

(0.77, 0.85) 
<0.001 

-0.01  

(-0.01, 0) 
<0.001 

*Adjusted for smoking, alcohol use, BMI, cell composition, follow up time, hypertension status, CHD status, and diabetes 
status. 
 

and DNAm-GrimAge (r=0.29), but DNAm-PhenoAge 

and DNAm-GrimAge were strongly correlated (r=0.77) 

(Supplementary Figure 1). Telomere length was weakly 

correlated with DNAm biomarkers (r=-0.10 to -0.18). 

 

Advancing chronological age was associated with 

lower mtDNAcn (β=-0.002; 95% confidence interval 

[CI]: -0.005, 0; p=0.05) and shorter leukocyte 

telomere length (β=-0.008;, 95% CI: -0.011, -0.004; 

p=0.05) and increased DNAm-Age (β=0.70; 95%  

CI: 0.64, 0.75; p <0.001), DNAm-PhenoAge (β=0.78; 

95% CI: 0.72, 0.85; p <0.001), and DNAm- 

GrimAge (β=0.81; 95% CI: 0.77, 0.85; p <0.001) 

(Table 2).  
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Associations of mtDNAcn with cross-sectional 

measures of DNAm-Age, DNAm-PhenoAge, DNAm-

GrimAge and leukocyte telomere length 

 

First, we sought to extend our previous analyses [31] 

using additional samples from 2011-2013 and to other 

aging biomarkers by examining the cross-sectional 

associations of mtDNAcn with DNAm-Age, DNAm-

PhenoAge, DNAm-GrimAge, and leukocyte telomere 

length (Figure 1 and Supplementary Table 2). In 

multivariable models adjusting for chronological age, 

smoking, alcohol use, BMI, hypertension status, CHD 

status, diabetes status, blood cell type composition, and 

time since first visit, we observed a monotonic negative 

association between mtDNAcn and cross-sectional 

measures of DNAm-Age (p-trend=0.03). We also 

observed that compared to the lowest quartile of 

mtDNAcn, Q2 (β=-0.80; 95% CI=-1.49, -0.12; p=0.02), 

Q3 (β=-1.01; 95% CI=-1.75, -0.26; p=0.01), and Q4 

(β=-0.83; 95% CI=-1.65, -0.02; p=0.04) of mtDNAcn 

were all negatively associated with DNAm-PhenoAge. 

However, there were no monotonic trends across these 

quartiles (p-trend=0.82). We did not observe 

associations of mtDNAcn with DNAm-GrimAge or 

leukocyte telomere length. 

 

Associations of mtDNAcn with prospective measures 

of DNAm-Age, DNAm-PhenoAge, DNAm-GrimAge 

and leukocyte telomere length 

 

Next, we examined whether baseline mtDNAcn is 

associated with the aging biomarkers at all future visits 

by modeling the baseline measure of mtDNAcn with the 

aging biomarkers measured during subsequent follow-

up visits (Figure 2 and Supplementary Table 3). In 

multivariable adjusted models, mtDNAcn was not

 

 
 

Figure 1. Cross-sectional associations of Mitochondrial DNA Copy Number (mtDNAcn) with DNA Methylation Age (DNAm-
Age), DNAm-PhenoAge, DNAm-GrimAge, and Telomere Length. The effect estimates (β) and corresponding 95% confidence intervals 

were estimated with linear mixed models adjusted for chronological age, smoking, alcohol use, BMI, hypertension status, CHD status, 
diabetes status, blood cell type composition, and follow up time.  
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associated with prospective measures of DNAm-Age 

(p-trend=0.33) or DNAm-GrimAge (p-trend=0.75). We 

did observe a positive association between mtDNAcn 

and prospective measures of DNAm-PhenoAge. 

Compared to the lowest quartile of mtDNAcn, Q2 

(β=1.05; 95% CI=0.05, 2.04; p=0.04), Q3 (β=0.77; 95% 

CI=-0.23, 1.76; p=0.13), and Q4 (β=1.38; 95% CI=0.38, 

2.38; p=0.01) were associated with higher DNAm-

PhenoAge. However, there was no clear dose-response 

(p-trend=0.10). MtDNAcn was also associated with 

shorter leukocyte telomere length in subsequent visits 

(p-trend=0.05). Compared to Q1, Q3 (β=-0.09; 95% 

CI=-0.18, -0.01; p=0.03) and Q4 (β=-0.08; 95% CI=-

0.17, 0.00; p=0.06) of mtDNAcn were both associated 

with shorter leukocyte telomere length. 

Sensitivity analyses 

 

To investigate possible presence of reversal causality, 

we examined whether baseline DNAm-Age and 

baseline DNAm-PhenoAge were associated with 

prospective measures of mtDNAcn. There were no 

associations between baseline DNAm-Age and 

DNAm-PhenoAge with prospective measures of 

mtDNAcn (data not shown). Additionally, we tested 

the robustness of our models by excluding those who 

were diagnosed with CHD or diabetes, those who 

reported active smoking, or those who were not self-

reported as white. In all cases, the resulting effect 

estimates were not meaningfully different compared 

to the results in Figures 1 and 2. 

 

 
 

Figure 2. Associations of baseline Mitochondrial DNA Copy Number (mtDNAcn) with prospective measures of DNA 
Methylation Age (DNAm-Age), DNAm-PhenoAge, DNAm-GrimAge, and Telomere Length. The effect estimates (β) and 

corresponding 95% confidence intervals were estimated with linear mixed models adjusted for chronological age, measure at baseline, 
smoking, alcohol use, BMI, hypertension status, CHD status, diabetes status, blood cell type composition, and follow up time. 
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DISCUSSION 
 

In our analysis of 812 aging male veterans from the 

greater Boston area, we found contrasting results between 

cross-sectional and prospective analyses of mtDNAcn 

with aging biomarkers DNAm-Age, DNAm-PhenoAge, 

DNAm-GrimAge and leukocyte telomere length. 

Overall, we found suggestive evidence that mtDNAcn is 

positively associated with prospective measures of 

DNAm-PhenoAge and negatively associated with 

prospective measures of leukocyte telomere length. 

These observed associations were independent of 

chronological age, suggesting that higher mtDNAcn is 

associated to greater biological aging.  

 

The results of our cross-sectional analyses presented 

here and in our previous report [31] are generally 

consistent with prior evidence. We observed that 

mtDNAcn is negatively associated with cross-sectional 

measures of DNAm-Age and DNAm-PhenoAge. This is 

consistent with expectations because mtDNAcn 

decreased with chronological age in both our study and 

in previous reports [21–23] while DNAm-Age and 

DNAm-PhenoAge expectedly increased with 

chronological age. Similarly, we observed that 

leukocyte telomere length decreased with chronological 

age in our study [32, 33], but we did not observe a 

positive association between mtDNAcn and leukocyte 

telomere length in our cross-sectional analyses as other 

cross-sectional studies have [24–27]. These differences 

in the telomere results may be a product of different 

study populations and different telomere length 

quantification methods.  

 

Our prospective analyses stood in contrast to the cross-

sectional results. Adjusting for measures of aging at 

baseline, mtDNAcn was positively associated with 

prospective measures of DNAm-PhenoAge. Similarly, 

although mtDNAcn was not associated with leukocyte 

telomere length cross-sectionally, there was an negative 

association between mtDNAcn and leukocyte telomere 

length at follow up visits, which is in accordance with 

studies that have previously reported that mtDNAcn is 

associated with shorter telomere length [34, 35]. These 

results suggest that while the negative cross-sectional 

associations reflect the opposing time-trends of 

mtDNAcn and aging biomarkers, it may be driven by 

unmeasured confounders such as underlying biological 

processes that drives both the decrease of mtDNAcn over 

time and the increase of DNAm-Age and DNAm-

PhenoAge over time. By adjusting for baseline DNAm-

PhenoAge and telomere length in our prospective 

analyses, we indirectly controlled for any underlying 

processes that would lead to changes in mtDNAcn and 

future DNAm-PhenoAge. There also the possibility that a 

cross-sectional analysis does not cover a sufficiently 

large time frame to detect modification of the aging 

biomarkers associated with mtDNAcn changes. It is 

notable that the relationship between mtDNAcn and 

DNAm-PhenoAge was not linear (p-trend=0.10) and not 

all quartiles reached statistical significance. Given that 

the effect estimates were all in the same direction, we 

speculate that this may reflect a non-linear relationship 

with a low threshold. Overall, our results suggest the 

mitochondria plays an active role in biological aging, 

with higher mtDNAcn leading to higher DNAm-

PhenoAge and shorter telomere length independent of 

any underlying process that may cause both.  

 

While we observed associations of mtDNAcn with 

DNAm-PhenoAge and leukocyte telomere length, no 

associations were observed with DNAm-Age and 

DNAm-GrimAge. This disparity may be due to the 

differences in the underlying biological drivers behind 

each of the aging metrics. DNAm-Age is based on 

chronological age and data obtained from multi-tissues 

samples and aims to reflect the general aging process. 

Specifically, it is thought that while DNAm-Age is 

associated with age-related diseases, it does not fully 

capture the risk differences for death and disease [13]. 

In contrast, DNAm-PhenoAge and DNAm-GrimAge 

were built on predictors of health and aim to better 

predict mortality from aging related diseases such as 

cardiovascular disease and cancer. These differences 

play an important role in terms of information that 

could be obtained from these metrics: DNAm-Age, 

being part of first-generation methylation based 

biomarkers, showed a strong correlation with 

chronological age but, with many age-related diseases 

and conditions, effects sizes of this correlation were 

small or moderate. As highlighted by Levine et al. a 

possible reason of this may reside in the fact that 

DNAm-Age does not include CpG sites that are 

important in terms of changes from physiological to 

pathological status [13]. This is why DNAm-

PhenoAge was built using clinical biomarkers like 

albumin, creatinine, glucose serum, C-reactive protein, 

lymphocyte percent, white blood cell count, mean cell 

volume and others that have been shown to be better 

indicators of remaining life expectancy than 

chronological age [36]. DNAm-GrimAge was built 

from selected plasma protein biomarkers, smoking 

history, and time to death from all mortality causes 

and has been shown to be a better predictor of lifespan 

than previous DNAm-based predictors [14], but it is 

unclear whether this particular set of CpGs capture 

health and disease status in the same way as DNAm-

PhenoAge. Shortened blood cell telomeres have been 

associated with higher rates of mortality from age-

related pathologies [4, 5] and it is thought that shorter 

telomere length is not only due to progressing 

chronological time resulting in repeated cell 
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replication, it also in part a result of the combined 

effects of oxidative stress and inflammation, two major 

components behind aging related diseases. Together, 

our data suggests that higher mtDNAcn may be 

associated with increased risk of aging-related disease 

and mortality, but not necessarily with departure of 

biological age from chronological age.  

 

Currently, the underlying biological relationships 

between mitochondrial health, as reflected by 

mtDNAcn, and biological aging are unclear. It is 

possible that mitochondrial plays a role in aging-related 

biology and aging-related diseases either independently 

of mechanisms that affects both mitochondrial health 

and aging or as a mediator. Biologically, the 

mitochondrial genomic content (i.e. mtDNAcn) can 

increase in response to stress via mitochondrial 

biogenesis to enhance energy supply and repair damage 

to cellular components [37]. It is possible that increased 

energy due to increased mitochondrial genomic content 

may influence methylation status since more availability 

of energy means more ATP available for methylation/ 

demethylation enzymes and their activity. This 

hypothesis is consistent with biological evidence that 

mitochondrial events can drive methylation profile in 

the nucleus [38]. Alternatively, because mtDNAcn has 

been associated with aging-related [18, 28–30], it is 

possible that the mtDNAcn impacts biological aging via 

roles in aging-related diseases. Lastly, mitochondria 

may drive DNA methylation changes in cellular 

entropy—characterized by less ATP production and 

higher heat dispersion [39]. The increased entropy of an 

aging cell may correlate to increased risk of aging 

related disease and mortality, reflected by an increase of 

an epigenetic metric like DNAm-PhenoAge 

 

To our knowledge, our study is the first to report on the 

prospective associations of mtDNAcn with aging 

biomarkers DNAm-Age, DNAm-PhenoAge, DNAm-

GrimAge and leukocyte telomere length. The current 

study possesses a number of strengths including the use 

of a large longitudinal cohort with repeated measures of 

aging and mitochondrial biomarkers. However, our 

study also has limitations. Our cohort is comprised 

primarily of white older men living in New England. 

There are other differences in the measures of biological 

aging by demographic factors (e.g. sex) that we were 

not able to examine. Thus, additional studies involving 

other demographic groups in different environments 

will be needed to confirm our findings more broadly. 

Finally, we used the existing literature and a priori 

knowledge of biological/clinical relevance to select and 

control for potential confounders, but we cannot rule 

out the possibility of unknown or residual confounding 

from underlying biological processes or external factors 

such as physical activity and psychosocial stress. In this 

scenario, mtDNAcn is a reflection or product of 

physical activity, psychosocial stress, or some 

underlying biological process that also causes biological 

aging or aging-related diseases and mtDNAcn may not 

be directly associated with higher DNAm-PhenoAge or 

lower leukocyte telomere length.  

 

CONCLUSIONS 
 

Our study of 812 men from an aging cohort indicate the 

involvement of mitochondria in modulating biological 

aging, as reflected by DNAm-PhenoAge and leukocyte 

telomere length. Overall, we found evidence that higher 

mtDNAcn may be associated with higher DNAm-

PhenoAge, indicating increased risk for aging-related 

disease and mortality, but not necessarily with departure 

of biological age from chronological age. Currently, the 

biological relationships between mitochondrial health 

and biological aging are not fully understood and future 

studies are necessary to further clarify the breadth of 

interactions between the mitochondria and aging 

biomarkers in human aging and to confirm our findings 

in other populations. 

 

MATERIALS AND METHODS 
 

Study population 

 

The Veteran Affairs Normative Aging Study (NAS), a 

closed longitudinal cohort study of men from the 

Greater Boston area, was established in 1963 with 2280 

individuals and followed up every 3-5 years. At 

enrollment, all participants were veterans 21-80 years of 

age, lived in the greater Boston area, and were free of 

chronic diseases. During follow-up study visits they 

undergo comprehensive outpatient medical evaluations 

and provide detailed data regarding diet and other 

lifestyle factors. Whole blood was collected after 

overnight fasting from each participant during NAS 

follow-up visits. The present study comprises 2186 

visits from 812 subjects with available blood samples 

from 1999 to 2013 where 596 subjects had at least 1 

follow-up visit and 438 had >2 follow-up visits.  

 

mtDNAcn measurement 

 

Quantitative real-time polymerase chain reaction (qRT-

PCR) was performed for mtDNAcn using total whole 

blood DNA as previously described [40, 41]. DNA 

samples were normalized and qRT-PCR was performed 

using primers listed in Supplementary Table 1. Nuclear 

DNA was quantified via TaqMan® RNase P Control 

Reagents Kit (Applied Biosystems). A laboratory 

reference DNA sample, which was a pool of 300 test 

samples (20 μL taken from each sample, final 

concentration: 40 ng/μL), was used to construct 
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standard curves (mtDNA and nDNA R2 ≥0.99). The 

standard curves were used to quantify mtDNA and 

nDNA copy numbers to standardize the 

mtDNA/nDNA obtained from all test samples in all 

reactions [40]. We used mtDNA/nDNA in the 

statistical analysis. A ratio value of 1 indicates that the 

mtDNA/ nDNA of the test sample is equal to the 

mtDNA/nDNA in the reference DNA pool used in the 

assay. Each reaction was performed in triplicate and 

the mean was used for analysis. The within-run and 

between-run coefficients of variation of this assay were 

3.35% and 3.26%, respectively [41]. 

 

DNA methylation analyses and methylation clocks 

 

DNA methylation from whole blood DNA extracted 

from the buffy coat layer was interrogated using the 

Infinium HumanMethylation450 BeadChip (Illumina). 

To minimize batch effects and ensure a similar age 

distribution across chips and plates, we randomized 

sample across plates and used a two-stage age-

stratified algorithm to randomize samples. We pre-

processed the samples with Illumina-type background 

correction without normalization, corrected for probe 

types using the BMIQ method [42], and removed 

probes below background fluorescence level (cutoff: 

p=0.05). For quality control, we removed samples 

where >5% of probes had a bead count <3 or if >1% of 

probes had a failed probe. DNAm-Age and DNAm-

GrimAge were calculated using Horvath’s publicly 

available online calculator (https://dnamage. 

genetics.ucla.edu/home). The DNAm-PhenoAge has 

been calculated based on methods described by Levine 

et al. [13]. Lastly, white blood cell composition was 

estimated using the established reference-based 

method [43]  

 

Leukocyte telomere length assay  

 

Leukocyte telomere length assay was performed using 

qRT-PCR as described [44–47]. In brief, buffy coat 

was obtained from whole blood samples and leukocyte 

DNA was purified using QIAamp DNA blood kit 

(Qiagen). DNA samples were normalized and qRT-

PCR was performed using primers listed in 

Supplementary Table 1. To calculate relative leukocyte 

TL, we calculated the ratio of telomere repeat copy 

number (T) to human beta-globin copy number. To 

control for plate effects, leukocyte TL was expressed 

as the ratio between the leukocyte TL in the study 

sample vs. leukocyte TL from a DNA pool. This DNA 

standard pool was included on all PCR plates and 

consisted of DNA from randomly selected NAS 

participants and was used to create an eight-point 

standard curve, ranging from 0.234 to 30 ng/uL. The 

coefficient of variation for 15 test samples analyzed 

over 3 consecutive days was 8.7%, similar to the 

reproducibility originally reported for this method [46].  

 

Statistical analysis 

 

A total of 812 participants had available blood samples 

from visits between 1999 and 2013. There were no 

differences in baseline characteristics between those 

included in our analyses compared to those excluded 

due to lack of biological samples. Outliers for mtDNA, 

DNAm-Age, DNAm-PhenoAge, and leukocyte 

telomere length were removed if the values were >3 

SD from the mean. 

 

We used random intercepts linear mixed models 

(LMMs) to study relationships mtDNAcn and the 

aging biomarkers. We first conducted cross-sectional 

analyses of mtDNAcn with aging biomarker outcomes 

where mtDNAcn from all visits were modeled with 

aging biomarkers from the same visits. Then, as 

prospective analyses, mtDNAcn from the first visit 

(i.e. earliest visit since 1999) was modeled as the 

exposure while the prospective measures of aging 

biomarkers from following visits were modeled as 

outcomes. For all models, mtDNAcn was modeled as 

both quartile and continuous variables. In the 

multivariable models, we controlled for the following 

covariates based on biological plausibility and 

previous works [31]: chronological age (continuous), 

follow up time (years, continuous), smoking status 

(never, current, former), cell type distribution (white 

blood cells, neutrophils, lymphocytes, monocytes, 

eosinophils, basophils, and platelets), alcohol 

consumption (<2drinks/day, ≥drinks/day), BMI 

(continuous), hypertension status (yes/no), diabetes 

status (yes/no), and coronary heart disease status 

(yes/no). For prospective analyses, baseline DNAm-

Age, DNAm-PhenoAge, and leukocyte telomere length 

values were included in their respective models as 

covariates.  

 

To examine the potential for reverse causation 

whereby greater biological aging may be driving 

mitochondrial changes, we examined the associations 

of baseline DNAm-Age, DNAm-PhenoAge, and 

leukocyte telomere length with prospective measures 

of mtDNAcn. For sensitivity analyses, we re-ran all 

analyses restricting to those without diabetes or CHD, 

non-active smokers, and only those who self-reported  

as white.  

 

Analysis was performed with R (v3.5.2) (R Core Team 

(2013). R: A language and environment for statistical 

computing. R Foundation for Statistical Computing, 

Vienna, Austria.) using the ‘lme4’ package. Statistical 

significance was defined as p-values < 0.05. 

https://dnamage.genetics.ucla.edu/home
https://dnamage.genetics.ucla.edu/home
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 
 

 
 

Supplementary Figure 1. Correlation matrix between the four aging biomarkers. The values in the figure show the 

coefficient estimates (rho) from Spearman correlation analyses for each estimate, also indicated by color. The p -values for all pairwise 
comparisons were <0.02.  
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Supplementary Tables 
 

Supplementary Table 1. PCR primers. 

Assay Component Sequence 

mtDNA mtDNA Forward Primer (mtF805) 5′ CCACGGGAAACAGCAGTGATT 3′ 

mtDNA mtDNA Reverse Primer (mtR927) 5′ CTATTGACTTGGGTTAATCGTGTGA 3′ 

mtDNA 
mtDNA TaqMan Probe 

(LifeTechnologies) 
6FAM- 5′ TGCCAGCCACCGCG 3′-MGB 

Telomere Length Telc 
5′-TGT TAG GTA TCC CTA TCC CTA TCC CTA 

TCC CTA TCC CTA ACA-3′ 

Telomere Length Telg 
5′-ACA CTA AGG TTT GGG TTT GGG TTT GGG 

TTT GGG TTA GTG T-3′  

Telomere Length Albd 
5′-GCC CGG CCC GCC GCG CCC GTC CCG CCG 

GAA AAG CAT GGT CGC CTG TT-3′ 

Telomere Length Albu 
5′-CGG CGG CGG GCG GCG CGG GCT GGG CGG 

AAA TGC TGC ACA GAA TCC TTG-3′ 

 

Supplementary Table 2. Cross-sectional analysis of mitochondrial DNA copy number (mtDNAcn) and aging 
biomarkers. 

  DNAm-Age DNAm-PhenoAge DNAm-GrimAge Telomere Length 

mtDNAcn
* 

β (95% CI) 
p-

value 
β (95% CI) 

p-
value 

β (95% CI) 
p-

value 
β (95% CI) 

p-
value 

Q1 Reference Reference Reference Reference 

Q2 
-0.21  

(-0.85, 0.43) 
0.52 

-0.80  
(-1.49, -0.12) 

0.02 
-0.02  

(-0.31, 0.28) 
0.91 

0.06  
(-0.02, 0.13) 0.13 

Q3 
-0.59  

(-1.29, 0.12) 
0.10 

-1.01  
(-1.75, -0.26) 

0.01 
-0.02  

(-0.35, 0.3) 
0.90 

0.03  
(-0.05, 0.1) 0.49 

Q4 
-1.11  

(-1.88, -0.35) 
0.00 

-0.83  
(-1.65, -0.02) 

0.04 
0  

(-0.36, 0.36) 
1.00 

-0.01  
(-0.08, 0.06) 0.80 

p-trend** 
-1.47  

(-2.79, -0.16) 
0.03 

-0.16  
(-1.48, 1.16) 

0.82 
0.12  

(-0.47, 0.7) 
0.70 

-0.01  
(-0.11, 0.1) 0.88 

*Models adjusted for chronological age, smoking, alcohol use, BMI, cell composition, follow up time, hypertension status, 
CHD status, and diabetes status. 

Supplementary Table 3. Prospective analyses of baseline mitochondrial copy number (mtDNAcn) with aging 
biomarkers during follow up. 

mtDNAcn 

DNAm-Age DNAm-PhenoAge DNAm-GrimAge Telomere Length 

β (95% CI) 
p-

value 
β (95% CI) 

p-
value 

β (95% CI) 
p-

value 
β (95% CI) 

p-
value 

Q1 Reference Reference Reference Reference 

Q2 
-0.38  

(-1.35, 0.6) 
0.45 

1.05  
(0.05, 2.04) 

0.04 
-0.02  

(-0.48, 0.45) 
0.94 

-0.06  
(-0.15, 0.02) 

0.16 

Q3 
-0.22  

(-1.2, 0.77) 
0.67 

0.77  
(-0.23, 1.76) 

0.13 
0.15  

(-0.31, 0.61) 
0.52 

-0.09  
(-0.18, -0.01) 

0.03 

Q4 
-0.23  

(-1.2, 0.74) 
0.64 

1.38  
(0.38, 2.38) 

0.01 
-0.02  

(-0.48, 0.44) 
0.93 

-0.08  
(-0.17, 0) 

0.06 

p-trend** 
-0.86  

(-2.6, 0.87) 
0.33 

1.51  
(-0.29, 3.31) 

0.10 
-0.22  

(-1.64, 1.18) 
0.75 

-0.16  
(-0.31, 0) 

0.05 

*All models adjusted for chronological age and outcome measure at baseline, follow up time, smoking, alcohol use, BMI, cell 
composition, hypertension status, CHD status, and diabetes status. **Using mtDNAcn as continuous models. 
 


